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Deep neural networks (DNNs) have achieved tremendous success in making accurate predictions in computer
vision, natural language processing, as well as science and engineering domains. However, it is also well-
recognized that DNNs sometimes make unexpected, incorrect, but overconfident predictions. This can cause
serious consequences in high-stakes applications, such as autonomous driving, medical diagnosis, and disaster
response. Uncertainty quantification (UQ) aims to estimate the confidence of DNN predictions in addition to
prediction accuracy. In recent years, many UQ methods have been developed for DNNs. It is of great practical
value to systematically categorize these UQ methods and compare their advantages and disadvantages.
However, existing surveys mostly focus on categorizing UQ methodologies from the perspective of neural
network architecture or Bayesian methods and ignore the source of uncertainty that each methodology can
incorporate, making it difficult to select an appropriate UQ method in practice. To fill the gap, this paper
presents a systematic taxonomy of UQ methods for DNNs based on the types of uncertainty sources (data
uncertainty versus model uncertainty). We summarize the advantages and disadvantages of methods in each
category. We show how UQ methodologies can be used in machine learning problems (e.g., active learning,
robustness to out-of-distribution samples, and deep reinforcement learning). We also identify several future
research directions, such as UQ for large language models (LLMs), UQ for DNNs in scientific simulations, and
UQ for DNNs with structured outputs.
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1 INTRODUCTION
Deep neural network (DNN) models have achieved remarkable success in computer vision, natural
language processing, and engineering domains [33, 91]. Most existing DNN models can be viewed
as deterministic functions mapping input features to target predictions through hierarchical rep-
resentation learning [13]. While these DNN models often achieve high overall accuracy, they are
also known to sometimes make unexpected, incorrect, and overconfident predictions, especially
in a complex real-world environment [125]. This can have serious consequences in high-stakes
applications, such as autonomous driving [27], medical diagnosis [11], and disaster response [3]. In
this regard, a DNN model should be aware of what it does not know. For example, in the medical
domain, when a DNN-based automatic diagnosis system encounters uncertain cases, it should refer
the patient to a medical expert for more in-depth analysis to avoid fatal mistakes. In an autonomous
vehicle, if a DNN model knows in what scenarios it tends to make mistakes in estimating road
conditions (e.g., bad weather), it can warn the driver to take over and avoid potential crashes.
Recognizing what a DNN model does not know requires assigning appropriate uncertainty

scores to its predictions, also called uncertainty quantification (UQ). Uncertainty in DNNs may
come from different types of sources, including data uncertainty and model uncertainty [169].
Data uncertainty (also aleatoric uncertainty) is an inherent property of the data, which originates
from the randomness and stochasticity of the data (e.g., sensor noises) or conflicting evidence
between the training labels (e.g., class confusion). Data uncertainty is often considered irreducible
because we cannot reduce it by adding more training samples. On the other hand, model uncertainty
(also epistemic uncertainty) comes from a lack of evidence or knowledge during model training
or inference, e.g., limited training samples, sub-optimal DNN model architectures or parameter
learning algorithms, and out-of-distribution (OOD) test samples.
Researchers have recently developed a growing number of UQ methods for DNN models. As

shown in Fig. 1, existing surveys of UQ methods for DNNs Researchers have recently developed
a growing number of UQ methods for DNN models. Specifically, [50] categorizes existing UQ
methods based on their types of DNN model architectures, including Bayesian neural networks,
ensemble models, and single model architecture, without discussing the connection between DNN
model architectures and the types of uncertainty they address. Other surveys only focus on the
Bayesian perspective. For example, [108] provides a comprehensive review of Bayesian neural
networks for UQ but overlooks methods from a frequentist perspective (e.g., prediction interval,
ensemble methods). [1] covers the ensemble methods and other frequentist methods, but it does not
compare their advantages and disadvantages. To the best of our knowledge, existing surveys on UQ
methods often overlook the types of uncertainty sources these methods address. This perspective
is important for selecting the appropriate UQ methods for different applications where one type of
uncertainty source dominates others.

Existing surveys on uncertainty
quantification methods for DNNs

Taxonomy from neural
network architecture
perspective [50].

Taxonomy from Bayesian
perspective [1, 108].

Taxonomy from uncertainty
source perspective.

Our survey

Fig. 1. Existing survey on UQ methods for DNNs.

ACM Comput. Surv., Vol. 37, No. 4, Article 111. Publication date: August 2023.



A Survey on UncertaintyQuantification Methods for Deep Learning 111:3

To fill the gap, we provide the first survey of UQ methods for DNNs from the perspective of
uncertainty sources. Specifically, we create a systematic taxonomy for DNN uncertainty quantifica-
tion methodologies based on the types of uncertainty sources they incorporate. We summarize the
characteristics of different methods in their technical approaches and compare their advantages and
disadvantages in addressing different types of uncertainty sources. We also connect the taxonomy
to several major deep learning topics where UQ methods are critical, including OOD detection,
active learning, and deep reinforcement learning. Finally, we identify research gaps and suggest
several directions for future research. The overall structure of this survey is as follows:

• Section 2 defines two different types of uncertainty (sources), i.e., data uncertainty and model
uncertainty, in the supervised learning setting. This will serve as a foundation for various
UQ methods in the survey.

• Section 3 highlights the practical applications of uncertainty quantification (UQ) for deep
learning, focusing on how UQ applies to various real-world problems, such as medical
diagnosis, geosciences, and transportation.

• Section 4 presents a taxonomy of UQ methods for deep learning based on the types of
uncertainty sources they capture, including data uncertainty, model uncertainty, and both.

• Section 5 discusses several key machine learning problems (active learning, OOD detection,
reinforcement learning) where UQ plays a significant role.

• Section 6 discusses several future research directions, including UQ for large language models
(LLMs), UQ for DNNs in scientific simulations, UQ for DNNs with structured outputs (e.g.,
spatiotemporal data and graphs), and combining UQ with explainability.

2 TYPES OF UNCERTAINTY SOURCE
This section first briefly reviews the mathematical formulation of supervised learning. Based on
that, we define two sources of uncertainty, i.e., data uncertainty and model uncertainty, and describe
their representation.

2.1 Preliminaries of Supervised Learning
Given training data D𝑡𝑟 = {(𝒙𝑖 , 𝑦𝑖 )}𝑛𝑖=1 ⊂ X × Y, X ⊆ R𝑑 is the input sample feature space, and Y
is the target variable space, whereby Y = {𝜔1, ..., 𝜔𝑘 } for a classification problem with 𝑘 classes,
and Y ⊆ R for a regression problem. Each training instance is assumed to be independent and
identically distributed (i.i.d.) from some unknown probability distribution 𝑝 (𝒙, 𝑦) on the space
X ×Y. Given a hypothesis spaceH consisting of hypotheses ℎ : X → Y and a loss function 𝑙 that
measures the discrepancy between prediction and ground-truth, a learning problem aims to find
the best hypothesis in the hypothesis space that minimizes the loss [66]:

ℎ∗ = argmin
ℎ∈H

𝑅 (ℎ), where 𝑅 (ℎ) =
∫
𝑙 (𝑦,ℎ (𝒙 ) )𝑝 (𝒙, 𝑦)𝑑𝒙𝑑𝑦. (1)

In practice, the model is learned by minimizing the empirical risk [110], defined as the average
loss over the training data D𝑡𝑟 :

ℎ̃ = argmin
ℎ∈H

𝑅𝑒𝑚𝑝 (ℎ), where 𝑅𝑒𝑚𝑝 (ℎ) =
1

|D𝑡𝑟 |
∑︁

(𝒙𝑖 ,𝑦𝑖 ) ∈D𝑡𝑟
𝑙 (𝑦𝑖 , ℎ (𝒙𝑖 ) ) . (2)

2.2 Model uncertainty
2.2.1 Sources of model uncertainty. Model uncertainty (a.k.a. epistemic uncertainty) represents the
uncertainty in a model’s predictions related to the imperfect model training process. It is reducible
given more training data. There are several common types of model uncertainty: uncertainty
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in the choice of model family, uncertainty in model parameter learning, and uncertainty due to
different sample distributions between model training and model inference (e.g., out-of-distribution
samples). These types of model uncertainty are illustrated in Fig. 2, where F denotes the entire

Parameter

Choice of model 
family

Sample 
distribution

ℎ"

ℎ∗

𝑓"∗

𝑓#∗
ℱ

ℋ

Fig. 2. Visualization on various model un-
certainty sources.

hypothesis space, 𝑓 ∗1 and 𝑓 ∗2 are the theoretical optimal hy-
potheses within F (based on Eq. 1) for two different sam-
ple distributions 𝑝1 (𝒙, 𝑦) and 𝑝2 (𝒙, 𝑦), respectively. That
is, 𝑓𝑖 = argminℎ∈F

∫
𝑙 (𝑦,ℎ(𝒙))𝑝𝑖 (𝒙, 𝑦)𝑑𝒙𝑑𝑦 for 𝑖 = 1, 2.

H is the sub-hypothesis space for one particular model
architecture and set of hyperparameters (e.g., a specific
transformer architecture). ℎ∗ is the theoretical optimal so-
lution within H for a sample distribution 𝑝1 (𝒙, 𝑦) based
on Eq. 1. ℎ̃ is the empirical solution within H that is
learned by an optimizer based on a particular training
data D𝑡𝑟 drawn from the population distribution 𝑝1 (𝒙, 𝑦)
(see Eq. 2).

Table 1 summarizes the different sources of model uncertainty in the supervised learning frame-
work. The first type, the choice of model family, is due to the lack of knowledge of which type of
model architecture is the most suitable. Because of this, the theoretical optimal solutionℎ∗ withinH
(assuming a particular model architecture) is different from the theoretical optimal 𝑓 ∗1 . It is related
to the “bias" part in the bias-variance decomposition [55]. Second, due to limited training data or im-
perfect parameter learning algorithms, the learned model ℎ̃ based on the empirical loss may exhibit

Table 1. Comparison of different types of model uncer-
tainty in the supervised learning setting

Model uncertainty
sources

Corresponding notation
in supervised learning

Choice of model
family

Optimal solution ℎ∗ within
H does not align
with theoretical
optimal 𝑓 ∗ in F

Model
parameter learning

Learned solution ℎ̃
does not align with
optimal ℎ∗ inH

Different sample
distributions in

learning and inference

Theoretical optimum
𝑓 ∗1 and 𝑓 ∗2 mismatch

under different sample
distribution 𝑝 (𝒙, 𝑦)

variations and deviate from the theoretically
optimal solution ℎ∗ within H . This leads to
model uncertainty related to model parameter
learning. It is related to the “variance" part in
the bias-variance decomposition. Third, model
uncertainty can be related to the different sam-
ple distributions between model training and
inference. For example, there may be two differ-
ent sample distributions 𝑝1 (𝒙, 𝑦) and 𝑝2 (𝒙, 𝑦).
Their theoretical optimal solutions 𝑓 ∗1 and 𝑓 ∗2
are different. Because of this, a model learned
from training samples following 𝑝1 (𝒙, 𝑦) will
contain uncertainty in its inference on a sam-
ple drawn from 𝑝2 (𝒙, 𝑦), i.e., out-of-distribution
(OOD) samples. Another relevant scenario is
that when a model makes predictions on a test
sample that is far away from other training sam-
ples (or surrounded by sparse training samples)
in the feature space X (see Fig. 6), the prediction tends to have higher uncertainty. This scenario is
also relevant to the OOD case since a test sample that is far away from other training samples is
more likely to be an OOD sample. Note that our definition of the three types of model uncertainty
may overlap. For instance, model uncertainty due to the lack of training samples near a test sample
can also be considered model parameter learning uncertainty.

2.2.2 Model uncertainty representation. As discussed above, the sources of model uncertainty can
arise from different aspects: the choice of model hyper-parameters, model parameter learning,
and different sample distributions in learning and inference. In general, there are various ways to
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Fig. 3. Data uncertainty visualization examples (Different colors represent samples in different classes).

represent model uncertainty from each type. First, uncertainty in model parameter learning arises
from suboptimal parameter optimization. To account for this uncertainty source, one approach is
through a Bayesian neural network (BNN) [74]. A BNN assumes a prior over the model parameters
and aims to infer the posterior distribution of the model parameters to reflect the parameter
uncertainty. This provides a theoretical foundation for model uncertainty. Second, uncertainty
arising from the choice of model hyper-parameters is due to the inductive bias in choosing a
sub-hypothesis space (e.g., a particular DNN architecture) [157, 166, 173]. It can be estimated with
ensembles of different neural network architectures (deep ensembles) [89]. The intuition is to
construct an ensemble of neural network architectures, each of which is trained separately. The
predictions of the ensemble on an input form a distribution over the target variable. Thus, the
variance of the target variable predictions can be used to estimate the prediction uncertainty. The
third type of uncertainty arises from differences in sample distributions, which are caused by the
mismatch between the distribution of the training dataset and that of a test sample. Capturing this
type of uncertainty requires learning meaningful embeddings that reflect sample distances. More
details are discussed in Section 4.

2.3 Data uncertainty
2.3.1 Source of data uncertainty. Data uncertainty (a.k.a aleatoric uncertainty) arises from inherent
data randomness, noise, or class confusion (i.e., the same feature value can correspond to different
classes in the sample distribution). It is irreducible even with more training data [169]. Randomness
or noise in data can arise in data acquisition due to instrument errors, data transmission errors, and
inappropriate data storage and formatting [58]. For example, for spatiotemporal data collected from
various space and airborne platforms (e.g., CubeSat, UAVs), the data uncertainty may result from
the sensor errors associated with the data acquisition devices and the fact that data are acquired in
a digital format (which is discrete in nature) [26] even though the underlying process is continuous.

2.3.2 Data uncertainty representation. Consider a training datasetD𝑡𝑟 drawn from the distribution
𝑝 (𝒙, 𝑦). Several techniques exist for representing data uncertainty to account for the inherent
randomness in the mapping from 𝒙 to 𝑦. In the context of a discriminative classification task, one
method to represent the uncertainty of the class variable, given a specific input 𝒙 is the maximum
class probability max𝑦 𝑝 (𝑦 |𝒙). Another approach uses the entropy of the condition class distribution
𝑝 (𝑦 |𝒙), which captures the randomness of the class distribution due to class confusion. For high-
dimensional structured samples, deep generative models can be employed to learn the complex
underlying distribution of the data and quantify uncertainty.

Data uncertainty arises from natural variability in data (for regression) and class confusion (for
classification). Consider the toy distribution in Fig. 3 as an example for classification, which consists
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of two normally distributed clusters. Each cluster (color) represents a separate class. The dataset
in Fig. 3 (a) has a sharper class boundary, indicating lower data uncertainty. The entropy of most
samples is low except for those near the class boundary, as shown in Fig. 3 (b). In contrast, the
dataset in Fig. 3 (c) exhibits more confusion between the two classes, corresponding to higher data
uncertainty as shown in Fig. 3 (d).
Beyond class confusion, data uncertainty can also arise from inherent noise (variability) in

the data generation or collection process. For example, in a regression problem, the observa-
tions can be represented by: 𝑦 = 𝑓 (𝒙) + 𝜖 (𝒙), where 𝑓 (𝒙) is the true data generation function,
and 𝜖 (𝒙) represents the measurement noise. There are two classes of noise: homoscedastic and
heteroscedastic noise [78]. Homoscedastic noise assumes constant noise variance across all the

Noisy Input 𝒙 Output y

Model 

architecture UQ

Model

parameter UQ

Dataset distribution shift

UQ (OOD data)

Data uncertainty
Input feature /

output label noise

Joint class  

distribution overlap 

Fig. 4. Different types of uncertainty source.

𝒙 inputs. Heteroscedastic noise, on the other hand, mod-
els the observation noise as a function of the input
𝜖 (𝒙) ∼ 𝑝 (𝜖 |𝒙) (e.g., heteroscedastic Gaussian noise).
The heteroscedastic noise model is useful in the case
where the noise level varies for different samples.

In summary, we have described the sources and repre-
sentations of both model and data uncertainty. As Fig. 4
shows, data uncertainty arises from the inherent prop-
erties of the given data, while model uncertainty stems
from issues such as misspecification of model architec-
tures, parameters, and the differences in sample distri-
butions. Depending on the nature of the application, the
predominant source of uncertainty may vary.

3 APPLICATION DOMAINS
In this section, we discuss several application domains of uncertainty quantification for deep
learning models. For each application, we discuss the motivation for developing uncertainty-aware
models, the source of uncertainty, and the challenges associated with uncertainty quantification.
The applications in medical diagnosis, geoscience, transportation and natural language processing
are discussed below. Additional applications in Biochemistry engineering and engineering design
are discussed in appendix.

Medical diagnosis: DNNmodels have achieved tremendous success in variousmedical applications,
including medical imaging, clinical diagnosis support, and treatment planning [116]. However, a
critical concern is that deep learning models tend to be over-confident even for a wrong prediction
[101], which can lead to serious consequences. Thus, it is essential to estimate the prediction
uncertainty (confidence). Both data uncertainty and model uncertainty exist in medical problems.
Data uncertainty arises from noisy measurements from medical devices, ambiguous class labels
(e.g., non-consensus tumor boundary annotations between different radiologists), and registration
errors between medical imagery taken at different times or from different devices [53]. Model
uncertainty also exists because patient cases in the test cases may not be well-represented in the
training set. There are several challenges in developing UQ methods. First, medical data contains
diverse sources of noise and uncertainty. Second, Interpretability in uncertainty quantification
is important, but it remains an unsolved issue in medical problems. Existing uncertainty-aware
deep learning models in medical domains can be categorized into those related to medical imaging
and those for non-medical imaging applications [101]. In medical imaging, deep learning is often
used for segmentation or classification of magnetic resonance imaging, ultrasound, and coherence
tomography imagery [39]. These studies often focus on data uncertainty due to ambiguous labels
[123], or image registration uncertainty [24]. Non-medical imaging applications are mostly related
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to clinical diagnosis support and treatment planning from Electronic Health Records. The presence
of significant variability in personalized predictions [38] requires a model to capture prediction
uncertainty.
Geoscience: With advances in GPS and remote sensing technologies, a growing volume of

spatiotemporal data is being collected from spaceborne, airborne, seaborne, and terrestrial plat-
forms [136]. Emerging spatiotemporal big data, increased computational power (GPUs), and recent
advances in deep learning technologies provide unique opportunities to advance our knowledge
of the Earth system [136]. For example, deep learning has been used to predict river flow and
temperature [68] and hurricane tracks [81]. Uncertainty quantification for deep learning is impor-
tant in geoscience because of the high-stakes decision-making involved (e.g., evacuation planning
based on hurricane tracking with a “cone of uncertainty”). Several challenges arise from the unique
characteristics of spatiotemporal data. First, spatiotemporal data exhibit various spatial, tempo-
ral, and spectral resolutions and diverse sources of noise and errors (e.g., sensor noise, obstacles,
atmospheric effects in remote sensing signals [97], and GPS errors). Second, spatial registration
errors and uncertainties may arise when co-registering different layers of geospatial data into
the same spatial reference system [59]. Third, spatiotemporal data are heterogeneous, i.e., the
data distribution often varies across different regions or time periods [72]. As a result, a deep
learning model trained in one region or time period may not generalize well to another. This issue
is particularly significant when spatial observations are sparsely distributed, leading to uncertainty
in inferring values at other locations in continuous space.

Transportation: Deep learning applied transportation data (e.g., ground sensors and video cameras
on the road) provides unique opportunities to monitor traffic conditions, analyze traffic patterns, and
improve decision-making. For instance, temporal graph neural networks are used to predict traffic
flows (e.g., congestion or accidents), and incorporating physical principles into neural network
modeling further enhances traffic modeling performance [67]. Deep learning plays a critical role
in autonomous driving (e.g., using LiDAR sensors and optical cameras to detect road lanes, other
vehicles, or pedestrians). Uncertainty quantification for AI in transportation is challenging due to
temporal dynamics, the complexity of road environment, and the existence of noise and uncertainty
(e.g., omission, sparse sensor coverage, errors, or inherent biases). For example, highly crowded
events can disrupt normal traffic flows on road networks. Existing studies on trajectory prediction
uncertainty consider the data uncertainty due to sparse or insufficient training data, and erroneous
or missing measurements from signal loss [106]. Other studies consider complex environmental
factors such as extremeweather conditions [154]. Uncertainty in short-term traffic status forecasting
(e.g., volume, travel speeds, and occupancy) is related to the stochastic environment and model
training [153], while uncertainty in long-term traffic modeling stems from exogenous factors
affecting traffic flow (e.g., rainstorms and snowstorms) [96].
Natural Language Processing: The advancement of pre-trained language models (PLMs) has

revolutionized language processing by addressing various tasks in a unified manner (e.g., machine
translation, sentiment analysis, speech recognition) [94]. Although natural language processing
(NLP) has made remarkable strides with the emergence of large language models (LLMs), these
models are prone to hallucinations (i.e., generating misleading or fabricated content) [164]. Thus,
uncertainty quantification plays a critical role in improving the trustworthiness of LLMs. However,
quantifying uncertainty in LLMs presents significant challenges. First, uncertainty can arise from
various sources related to both data andmodels. Data uncertainty stems from ambiguities, noise (e.g.,
out-of-vocabulary words or distractions), and semantic complexities in the input language. Model
uncertainty occurs when the model lacks the specific knowledge required for out-of-distribution
input queries, leading to arbitrary responses. Second, the large vocabulary space complicates the
direct assessment of confidence through probability likelihood, and relying solely on prediction
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logits can lead to overconfidence [57]. Therefore, capturing uncertainty in the semantic space is
essential due to the semantic similarity among different answers. Third, aligning uncertainty with
actual correctness (calibration) is crucial for trustworthy applications of LLMs.

4 A TAXONOMY OF UQ METHODOLOGIES FOR DNNS
In this section, we provide a new taxonomy (Fig. 5) of UQ methods for DNNs based on the type
of uncertainty sources: model uncertainty, data uncertainty, and the combination of the two. We
discuss the underlying intuitions of specific methods in each category and compare their pros and
cons.

Uncertainty quantification for DNN

Model Uncertainty
Data Uncertainty Model + Data Uncertainty

Parameter
(BNN)

Model architecture/
hyper-parameter

Sample
distribution

Laplace
approximation

Variational
inference MCMC

Distance-
aware
model

Deep Gaussian
process

Discriminative
model

Deep generative
model

Parametric
predictive
distribution

Non-Parametric
predictive
interval

Combination
approaches

Evidential
deep learning

Conformal
prediction

Fig. 5. A taxonomy for existing literature on UQ for DNN.

4.1 Model Uncertainty
This subsection reviews the existing methods for model uncertainty in DNNs. We categorize
these methods into three subcategories: Bayesian neural network, ensemble models, and sample
distribution-related models. We now introduce each subcategory.

4.1.1 Bayesian Neural Networks. From a frequentist point of view, there exists a single set of
parameters 𝜽 ∗ that best fit the DNN model, where 𝜽 ∗ = argmin𝜽 L(Y, 𝑓 (X, 𝜽 )) and L is the loss
function. However, the point estimation of DNN parameters can be over-fitting and overconfident
[144]. In contrast, the Bayesian neural network (BNN) imposes a prior on the neural network
parameters 𝑝 (𝜽 ) and learns the posterior distribution of these parameters 𝑝 (𝜽 |X,Y) = 𝑝 (Y |X,𝜽 )𝑝 (𝜽 )

𝑝 (Y |X) .
This term represents the posterior distribution of model parameters conditioned on the training
dataset. This distribution reflects the extent to which our model can capture patterns in the
training data. Assuming a Gaussian distribution for the model parameters, a larger variance in
the distribution indicates greater uncertainty in the model. Such uncertainty can be caused by a
limited amount of training data. For inference on new samples 𝒙∗, we can marginalize out the
model parameters as follows:

𝑝 (𝑦∗ |𝑥∗,X,Y) =
∫
𝑝 (𝑦∗ |𝒙∗, 𝜽 )𝑝 (𝜽 |X,Y)𝑑𝜽 . (3)

The uncertainty of a test sample is reflected by the variance of its prediction distribution. Al-
though BNN can theoretically quantify total uncertainty by modeling both prediction distribution
𝑝 (𝑦∗ |𝒙∗, 𝜽 ) (data uncertainty) and parameter posterior distribution 𝑝 (𝜽 |X,Y) (model uncertainty),
most existing work simplifies the analysis by treating the prediction 𝑝 (𝑦∗ |𝒙∗, 𝜽 ) as determinis-
tic. Therefore, these BNN methods primarily capture parameter uncertainty rather than total
uncertainty.

However, the parameter posterior distribution is analytically intractable and lacks a closed-form
solution. An approximation must be made. Various approaches have been proposed to estimate the
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posterior of the neural network parameters in a simpler and tractable form. Some approximation
methods define a parameterized class of distributions, Q, from which they select an approximation
𝑞𝜙 (𝜽 ) for the posterior. For example, Q can be the set of all factorized Gaussian distributions, and
𝜙 is the parameters of the mean and diagonal variance. The distribution 𝑞𝜙 (𝜽 ) ∈ Q is selected
according to some optimization criteria to approximate the posterior. Two popular methods for
optimization are variational inference [17] and Laplace approximation [45]. Instead of approximating
the posterior analytically, another approach is to address this problem using Monte Carlo sampling,
specifically Markov Chain Monte Carlo sampling. More details are in the Appendix.

Monte-Carlo (MC) dropout: The MC dropout approach [46] is currently among the most pop-
ular methods for DNN uncertainty quantification due to its simplicity and ease of implementation.
The main idea is that the optimization of a neural network with a dropout layer can be equivalent
to approximating a BNN with variational inference on a parametric Bernoulli distribution [46].
Uncertainty estimation can be obtained by computing the variance of multiple stochastic forward
predictions with different dropout masks (switching off some neurons’ activations). The average
predictions with various weights dropout can be interpreted as approximating the integration over
the model’s weights (as Eq.3) whose variational distribution follows the Bernoulli distribution. MC
dropout offers several advantages. First, it requires minimal modification to the existing DNN ar-
chitecture design, allowing for straightforward implementation in practice. Second, it mitigates the
problem of representing uncertainty by sacrificing model accuracy as it only affects the inference.
However, although there is theoretical intuition for the probabilistic interpretation of MC dropout
from a variational approximation perspective, MC dropout tends to be less calibrated than other
UQ methods on many uncertainty benchmark datasets [57].
In summary, we review several approximation methods for BNNs designed to reduce compu-

tational and memory demands. These methods capture model uncertainty associated with the
parameters. However, the need for approximation may lead to less accurate uncertainty estimates,
and in practice, these methods remain computationally intensive.

4.1.2 Ensemble models. Ensemble models combine multiple neural networks to form an output
distribution, where the variability of the distribution quantifies model uncertainty. To capture model
uncertainty from various sources, several strategies for constructing ensembles have been adopted.
The first strategy involves bootstrapping [89, 90]. This approach involves random sampling from
the original dataset with replacement. An ensemble of neural networks is then constructed, with
each model trained on different bootstrapped samples. After training, inference is performed by
aggregating the ensemble predictions, with uncertainty obtained from the prediction variance (for
regression) or average entropy (for classification). The second strategy is to construct different neural
network architectures by varying the number of layers, hidden neurons, and types of activation
functions [105, 158]. This strategy can account for the uncertainty from model misspecification.
Other strategies involve different parameter initializations and random shuffling of datasets. This
approach is better than the bootstrap strategy since more samples can be utilized for each model.
The third type is the hyperensemble approach [157]. This approach constructs ensembles with
different hyper-parameters, such as learning rate, optimization strategy, and training strategy.
Although ensemble models are relatively simple to implement, they have several limitations.

First, they have a high computational cost as they require training multiple independent networks
and maintaining all networks in memory during inference. Second, model diversity is required to
ensure accurate uncertainty estimation.

4.1.3 Sample distribution-related methods. In Section 3.1.1, we described model uncertainty related
to sample distribution as a distinct category. It further includes two cases: (1) test samples and
training samples follow different distributions (out of distribution); (2) a test sample is far from
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Fig. 6. Gaussian Process inference example: green lines are the prediction sample distribution.

other training samples (or is surrounded by sparse training samples) in the feature space. Here, we
focus only on methods for case (2), i.e., sample density (distance)-aware neural networks, and do
not specifically discuss out-of-distribution (OOD) methods, as BNNs and ensemble methods can
also be used for OOD-related uncertainty. Methods for addressing OOD problems will be reviewed
in Section 5. Existing methods can be grouped into two categories: Gaussian process hybrid neural
network and distance-aware neural network.
Background of Gaussian Process: A Gaussian process (GP) is a type of stochastic process

where any finite collection of random variables follows a multivariate Gaussian distribution [159].
Given a set of points {𝒙𝑖 }𝑛𝑖=1, a GP defines a prior over functions 𝑦𝑖 = 𝑓 (𝒙𝑖 ), and assumes the
𝑝 (𝑦1, ..., 𝑦𝑛) follows the Gaussian distribution N(𝝁 (𝒙), 𝚺(𝒙)), where 𝒙 = (𝒙1, ..., 𝒙𝑛), 𝝁 (𝒙) is the
mean function, and 𝚺(𝒙) is the covariance function based on 𝚺𝑖 𝑗 = 𝜅 (𝒙𝑖 , 𝒙 𝑗 ). 𝜅 is a positive definite
kernel function (e.g., radial basis function) that measures the similarity between pairs of input
samples and controls the smoothness of the GP. For GP inference, given a new sample 𝒙∗, the joint
distribution between prediction for the new sample 𝑦∗ and the target variable 𝑦 of the training
samples is shown in Eq. 4, where K𝑛 is the covariance matrix between the 𝑛 training samples, K𝒙 is
the covariance between the test sample and training samples, and 𝐾∗ is the prior variance of the
test sample. (

y
𝑦∗

)
= N

( (
𝝁
𝜇∗

)
,

(
K𝑛 K𝒙

K𝑇𝒙 𝐾∗

) )
. (4)

The prediction for a new test sample 𝒙∗ is obtained by computing the posterior distribution
conditioned on the training data Dtr, given by Eq. 5. GP inference yields lower uncertainty when
test samples are in regions where training samples are abundant (higher sample density as shown
in the middle part of Fig. 6), otherwise resulting in higher uncertainty (boundary part of Fig. 6).
Note that although GP belongs to Bayesian methods, it considers the uncertainty source differently
from the BNN methods. The GP methods capture uncertainty related to sample sparsity. Thus, we
consider GP to be a separate sub-category.

𝑝 (𝑦∗ |𝑥∗,Dtrain, 𝜽 ) = N(𝑦 |K𝑇𝒙K−1
𝑛 𝒚, 𝐾𝑥∗ − K𝑇𝒙K

−1
𝑛 K𝒙 ) . (5)

Sparse Gaussian process: Though GP has a sound theoretical framework for uncertainty estimation,
it is computationally unscalable for large datasets because inverting the covariance matrix requires
O(𝑛3) time complexity (𝑛 is the total number of training samples). To mitigate this bottleneck,
many methods [139, 145] attempt to make a sparse approximation to the full GP to reduce the
computational complexity to O(𝑚2𝑛) (𝑚 is the number of inducing variables, and𝑚 ≪ 𝑛). The
inducing variables can be anywhere in the input domain, and are not constrained to be a subset of
the training data and are represented asinput-output pairs {𝒙̂𝑖 , 𝑦𝑖 }𝑚𝑖=1. Thus, inverting the original
covariance matrix K𝑛 can be replaced with a low-rank approximation from the inducing variables,
which only requires the inversion of an𝑚×𝑚 matrix K𝑚 . Then, the question becomes how to select
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the𝑚 best-inducing variables to be representative of the training dataset. Common approaches
assume that the best representative inducing variables are those that maximize the likelihood of the
training dataset [139]. Subsequently, the location of inducing variables and the hyper-parameters
of GP are optimized simultaneously through maximum likelihood. The training data likelihood can
be obtained by marginalizing the inducing variables on the joint distribution of the training dataset
and inducing variables.

Besides the computational challenge, another limitation of GP is that the joint Gaussian distribu-
tion assumption on the target variables limits the model’s capability to capture diverse relationships
among instances within large datasets. Additionally, GP relies heavily on the kernel function to
compute the similarity between samples by transforming input features into a high-dimensional
manifold. However, for high-dimensional structured data, it is challenging to construct appropriate
kernel functions to extract hierarchical features for computing similarity between samples. To
address these limitations, two research areas have been proposed: deep kernel learning and Deep
(Compositional) Gaussian Process.

Gaussian Process Hybrid Neural Network
Deep kernel learning [160] aims to combine the structured feature learning capability of DNN

with a GP to learn more flexible representations. The motivation is that DNN can automatically
discover meaningful representations from high-dimensional data, which could alleviate the fixed
kernel limitations of GP and improve its expressiveness. Specifically, the deep kernel learning
approach transforms the kernel K𝜽 (𝒙𝑖 , 𝒙 𝑗 ) to K𝜽 (𝑔(𝒙𝑖 ;𝒘), 𝑔(𝒙 𝑗 ,𝒘)), where 𝑔(·;𝒘) is the neural
network parameterized with 𝒘 and K𝜽 is the base kernel function (e.g., radial basis function) of
GP. Deep learning transformation can capture the non-linear and hierarchical structure in high-
dimensional data. The GP with the base kernel is applied on the final layer of DNN and makes
inferences based on the learned latent features, as shown in Fig. 7 (a). The idea has been successfully
applied to spatio-temporal crop yield prediction, where GP plays a role in accounting for the
spatio-temporalautocorrelation between samples [171], which may not be captured by the DNN
features alone.

GP

Input 𝒙

𝝈𝟐

Feature
extraction

Prediction

Uncertainty

Output

𝝁

(a) Deep kernel learning

Input 𝒙

GP1 GP2

…
GPn

Output

𝝈𝟐

Prediction

Uncertainty

𝝁

(b) Deep Gaussian process

Fig. 7. Illustration of deep kernel learning and deep (compositional) Gaussian process.

Deep (compositional) Gaussian process [29] represents another category, focusing on function
composition inspired by deep neural network architecture. In this model, each layer is a GP model
whose inputs are determined by the output of the preceding GP, as shown in Fig. 7 (b). The recursive
composition of GPs results in a more complex distribution over the predicted target variables, which
addresses the joint Gaussian distribution limitation of traditional GP. The forward propagation and
joint probability distribution of the model can be expressed as follows:

𝒚 = 𝒇 𝐿 (𝒇 𝐿−1 (...𝒇 1 (𝒙 ) ) ) and 𝑝 (𝑦, 𝒇 𝐿, ...𝒇 1 |𝒙 ) ∼ 𝑝 (𝒚 |𝒇 𝑳 )
𝐿∏
𝑖=2

𝑝 (𝒇 𝑖 |𝒇 𝑖−1 )𝑝 (𝒇 1 |𝒙 ), (6)
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where each function 𝒇 𝑖 (·) represents a Gaussian process model. The intermediate distributions
follow Gaussian distributions, but the final distribution will capture a more complex distribution
over the target variable 𝒚. The composition also allows uncertainty to propagate from the input
through each intermediate layer. However, the challenge associatedwith the compositional Gaussian
process lies in maximizing the data likelihood 𝑝 (𝒚 |𝒙), the direct marginalization of hidden variables
𝒇 𝑖 is intractable. To overcome this challenge, variational inference introduces inducing points on
each hidden layer and by optimizing over the variational distribution 𝑞(𝒇 𝑖 ). Then, the marginal
likelihood lower bound can be obtained by propagating the variational approximation at each layer
[147]. The framework also allows for incorporating partial or uncertain observations into the model
by placing a prior over the input variables 𝒙 and propagating uncertainty layer by layer [30].

Table 2. Comparison of UQ methods for model uncertainty.

Category Method Pros Cons

BNN: Capture parameter
uncertainty via posterior
estimation.

Variational Inference &
Laplace Approximation
[88, 102, 119, 127, 128]

Practically efficient
for large models

Approximation is
based on assumptions
(e.g., Gaussian distribution)

MCMC
[111, 133, 161]

Flexible for any
distribution assumption High computational cost

MC Dropout
[46, 57]

Simple, scalable, flexible
for large neural networks Lacks theoretical grounding

Ensemble: Capture
uncertainty from models,
parameters, and
hyperparameters

Network/Bootstrap
/Hyper-Ensemble
[89, 105, 157]

Capture uncertainty
from architecture, learning
algorithms, hyperparameters

High computational cost

Sample Distribution:
Uncertainty due to
OOD inputs.

Deep Gaussian Processes
[29, 160, 171]

Strong theoretical
grounding in GPs

Poor scalability
to large datasets

Distance-aware DNNs
[99, 148, 149] Simple and efficient Embedding distances may

not reflect input similarity

Distance-aware neural network:Although modern neural networks can extract representative
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Fig. 8. Two variants of the architecture (adapted from [99]).

features from large datasets, they do
not consider how distinct new test
samples may be from the training
dataset. To address the uncertainty
resulting from sample feature den-
sity, many approaches incorporate
distance awareness between samples
into neural network design, inspired
by Gaussian processes [99]. Assume
the input data manifold is equipped
with a metric | | · | |X , quantifying the
distance between samples in the feature space. The intuition behind a distance-aware neural net-
work is to leverage DNNs’ feature extraction capability to learn a hidden representation ℎ(𝒙) that
reflects a meaningful distance in the data manifold | |𝒙 − 𝒙′ | |X as shown in Fig 8. However, one
significant issue with the unconstrainted DNN model is the feature collapse, which means DNN
feature extraction can map in-distribution data (training samples) and out-of-distribution data (lies
further from the training data) to similar latent representations. Thus the Gaussian process based
on the DNN extracted feature can be over-confident for those samples that lie further away from
training samples. To avoid the feature collapse problem, several constraints have been proposed:
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sensitivity and smoothness [148, 149]. Sensitivity implies that a small change in the input should
result in a small change in the feature representation, which helps ensure distinct samples are
mapped to different latent features. Smoothness implies that small changes in the input should
not cause dramatic changes in the output. In general, these two constraints can be ensured by bi-
Lipschitz constraints [100], which means the relative changes in the hidden feature representation
ℎ𝜽 (𝒙) are bounded by changes in input space as Eq. 7 shows.

𝐿1 ∗ |𝒙 − 𝒙′ |X < |ℎ𝜽 (𝒙 ) − ℎ𝜽 (𝒙′ ) |H < 𝐿2 ∗ |𝒙 − 𝒙′ |X . (7)

To enforce bi-Lipschitz constraints to DNN, two approaches have been proposed: spectral normal-
ization and gradient penalty. Spectral normalization [99] claims that the bi-Lipschitz constants
𝐿 can be ensured to be less than one by normalizing the weights matrix in each layer with the
spectral norm. This method is fast and effective for practical implementation. The other approach
is called gradient penalty [149], which introduces another loss penalty: the square gradient at
each input sample ∇2

𝒙ℎ𝜽 (𝒙). This will add a soft constraint to the neural networks to constrain
the Lipschitz coefficients. Gradient penalty is a soft constraint compared to spectral normalization
and is computationally more intensive. Some works extend the distance-aware framework to the
non-parametric estimation of the conditional label distribution, enabling more flexible modeling of
the distribution [85, 155].

Summary ofModel Uncertainty:We summarize and compare existingmethods for quantifying
model uncertainty in Table 2. BNN models can capture model uncertainty arising from parameter
estimation but usually have very high computational costs, making them infeasible for practical
applications. The ensemble models can capture uncertainty from multiple perspectives, such as
model architecture misspecification, limited training dataset, and choices of hyperparameters. The
method also has a high computational cost. On the other hand, the sample distribution-based model
can capture uncertainty due to distribution shifts, but it’s often hard to learn the distance-aware
feature space and the method requires adding constraints to the neural network model.

Although we categorize BNN and ensemble methods under model uncertainty, they can be used
to capture both model and data uncertainty simultaneously with minor modification. For BNNs,
as shown in Equation 3, model uncertainty is reflected by the posterior distribution over model
parameters, while data uncertainty can be captured by averaging the predictive distributions from
multiple model samples. Similarly, for ensemble methods, data uncertainty can be further obtained
through averaging the class probability predictions across individual models. A common approach
to obtain the class probability is through the softmax of output logits. However, this method may
lead to overconfident predictions [57]. To address this issue, a variety of calibration techniques,
including both parametric and non-parametric approaches, have been developed to capture the
predicted distribution for data uncertainty. More detailed discussions are in Section 4.3.1.

4.2 Data Uncertainty
This section discusses the existing methodologies that quantify data uncertainty in DNN models.
Data uncertainty is modeled by the distribution 𝑝 (𝑦 |𝒙, 𝜽 ), where 𝜽 represents the neural network
parameters. We categorize these approaches into deep discriminative models and deep generative
models for learning this distribution.

4.2.1 Deep discriminative model . To quantify data uncertainty, a discriminative model outputs a
predictive distribution directly using a neural network. Specifically, the distribution can be modeled
as a parametric or non-parametric model. A parametric model assumes the output follows a
specified family of probability distributions with parameters (e.g., mean and variance for a Gaussian
distribution) estimated by the neural network. In contrast, the non-parametric model does not
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have any assumption on the underlying distributions. We will discuss existing methods for each
category in detail.

Parametric model: The standard approach for quantifying data uncertainty is to directly learn
a parametric model for 𝑝 (𝑦 |𝒙, 𝜽 ). From a frequentist perspective, there exists a single set of optimal
parameters 𝜽 ∗. For the classification problem, 𝑝 (𝑦 |𝒙, 𝜽 ) is a parameterized categorical distribution
over 𝑘 classes, 𝒚 ∈ R𝑝 is a multidimensional structured output, with distribution parameters
𝝅 = (𝜋1, ..., 𝜋𝐾 ) predicted by the model output as Eq. 8 shows.

𝑝 (𝑦 |𝒙, 𝜽 ) = Categorical(𝑦;𝝅 ) , 𝝅 = 𝑓 (𝒙 ;𝜽 ),
𝐾∑︁
𝑐=1

𝜋𝑐 = 1, 𝜋𝑐 > 0. (8)

In order to obtain the categorical distribution parameters, a straightforward approach uses the
softmax probability output 𝜋𝑖 =

exp(ℎ𝑖 (𝑥 ;𝜽 ) )∑𝑘
𝑐=1 exp(ℎ𝑐 (𝑥 ;𝜽 ) )

as the predicted uncertainty, but these methods
tend to be over-confident because the softmax operation squeezes the prediction probability toward
extreme values (zero or one) for the vast majority range of ℎ𝑖 [62]. Subsequent work [57] calibrate
the softmax uncertainty with temperature scaling, which simply adds an additional hyperparameter
𝑇 to the softmax calculation as 𝑝 =

exp(ℎ𝑖 (𝑥 )/𝑇 )∑𝑘
𝑐=1 exp(ℎ𝑐 (𝑥 )/𝑇 )

to overcome the overconfident outputs. This
approach is straightforward to implement but may still be overconfident due to a lack of constraints
and requires calibration of the parameter.

For regression problems, data uncertainty is assumed to arise from inherent noise in the training
data (e.g., measurement or labeling error). In general, the training data is modeled as independent
additive Gaussian noise with sample-dependent variance 𝜎 (𝒙), which indicates the target variable
𝑦𝑖 = 𝑓𝜽 (𝒙𝑖 ) + 𝜖 (𝒙𝑖 ). 𝜖 (𝒙𝑖 ) is the independent heterogeneous Gaussian noise, representing each sam-
ple’s uncertainty. In this way, the output will be a parameterized continuous Gaussian distribution,
as Eq. 9 and Fig. 9 (a) show. The mean and variance are predicted from the neural network [78],
where the mean represents the model’s prediction, and the variance represents the uncertainty
of each sample’s prediction. To optimize the neural network parameters 𝜽 , maximum likelihood
optimization is performed jointly on the mean and variance as Eq. 9 shows. This is also known
as heteroscedastic regression, which assumes the observational noise level varies with different
samples. This is suitable for cases where some samples have higher noise (uncertainty), while
others have lower. Besides Gaussian distribution, the neural network can also be parameterized
with other types of distributions, such as mixture Gaussian distribution [56], which is implemented
with mixture density network (MDN) [16], assuming multiple modes for the prediction. MDN has
the advantage of accounting for the uncertainty from multiple prediction modes but consumes
more computation. Choosing a suitable parameterized distribution is essential and depends on the
problem.

𝑝 (𝑦 |𝒙, 𝜽 ) = N(𝑓𝜽 (𝒙 ), 𝜎𝜽 (𝒙 ) ) and LNN (𝜽 ) =
1
𝑛

𝑛∑︁
𝑖=1

1
2𝜎2

𝜽 (𝒙𝑖 )
| |𝑦𝑖 − 𝑓𝜽 (𝒙𝒊 ) | |2 +

1
2
log𝜎2

𝜽 (𝒙𝑖 ) . (9)

The advantage of using a predictive distribution is that it can be easily incorporated into existing
neural network architectures and requires slight modification to the training and inference process.
However, the explicit parameterization form requires choosing the appropriate distribution to
capture the underlying uncertainty accurately, which can be hard if no prior information is available.

Non-parametric model: A widely popular approach for indicating data uncertainty is through
prediction interval (PI) [118]. For regression problems, the prediction intervals output a lower
and upper bound [𝑦𝑙 , 𝑦𝑢], where we expect the ground truth 𝑦 falls within the interval with a
prescribed confidence level, 1 − 𝛼 , meaning that 𝑝 (𝑦 ∈ [𝑦𝑙 , 𝑦𝑢]) > 1 − 𝛼 as shown in Fig. 9 (b). This
approach is more flexible and does not require explicit distribution over the prediction variable.
Traditional prediction intervals are typically constructed in two steps: first, to learn the point
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Fig. 9. Neural network architecture for the parametric and non-parametric model.

estimation of the target variable, obtained by minimizing an error-based loss function (e.g., mean
square loss), followed by estimating the prediction variance around the local optimum prediction.
The strategy tries to minimize the prediction error but not optimize the interval quality. One
approach [79] explicitly constructs a lower and upper bound estimation (LUBE) to improve the PI
characteristics, i.e., the width and coverage probability. The basic intuition is that the PI should
cover the ground truth with a certain pre-defined probability (confidence level), but should be as
narrow as possible. This approach enhances the quality of the constructed PI, but the resulting
cost function is non-differentiable and requires Simulated Annealing (SA) sampling to obtain the
optimal NN parameters.
To address the non-differentiable limitation of LUBE, an alternative approach uses a coverage

width-based loss function [118] with a goal similar to LUBE, as shown in the Eq.10. The mean pre-
diction interval width (MPIW) is defined as |𝑦𝑢 −𝑦𝑙 |, and the prediction interval coverage width (PICP)
measures the average probability that the PI covers the ground truth. The total loss encourages the
PI to be narrow while having a higher coverage probability above the prescribed confidence level 𝛼 .

Loss = MPIW + 𝜆 ∗max(0, (1 − 𝛼 ) − PICP)2 . (10)

Recent approaches frame prediction interval learning as a constrained optimization problem.
This optimization problem can be viewed from two perspectives: primal and dual perspectives. The
primal perspective frames the objective as minimizing the PI width under the constraint that the PI
attains a coverage probability larger than the confidence level [22], which is expressed as follows:

min
𝐿,𝑈 ∈H,𝐿<𝑈

E𝒙∼𝜋 (𝒙 ) (𝑈 (𝒙 ) − 𝐿 (𝒙 ) ) 𝑠.𝑡 . 𝑝𝜋 (𝑦 ∈ [𝐿 (𝒙 ),𝑈 (𝒙 ) ] ) > 1 − 𝛼. (11)

where E𝒙∼𝜋 (𝒙 ) denotes the expectation concerning the marginal distribution of input samples
𝒙 , and 𝑝𝜋 denote the probability of the input-output pair distribution. To enforce the optimality
and feasibility of the optimization problem, the tradeoff is developed through the studying of two
characteristics of this approach: Lipschitz continuous model class [150] and Vapnik–Chervonenkis
(VC)-subgraph class [22]. On the other hand, the dual perspective frames the objective asmaximizing
PI coverage probability subject to a fixed global budget constraint on average PI width in a batch
setting [130].

min
𝑓 ∈F
E(𝒙,𝑦)∼𝜋 (𝒙,𝑦)𝐿 (𝑦,𝑈 (𝒙 ), 𝐿 (𝒙 ) ) 𝑠.𝑡 .

∑︁
𝑖

(𝑈 (𝒙𝑖 ) − 𝐿 (𝒙 )𝑖 ) < 𝐵. (12)

Researchers presented a discriminative learning framework that optimizes the expected error
rate under a budget constraint on the interval sizes. This approach avoids single-point loss and
provides a statistical guarantee of generalization for the entire population. In contrast to the primal
setup, the dual perspective in batch learning constructs the prediction interval of a group of test
points simultaneously, reducing the computational overhead.
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4.2.2 Deep Generative Model. Deep generative models (DGMs) are a family of probabilistic models
that aim to learn the complex, high-dimensional data distribution 𝑝data (𝒙) with DNN. DGMs
are capable of learning the intractable data distribution in the high-dimensional feature space
X ⊆ R𝑛 from a large number of independent and identically distributed observed samples {𝒙𝑖 }𝑚𝑖=1.
Specifically, they learn a probabilistic mapping from some latent variables 𝒛 ∈ R𝑑 that follow
a tractable distribution to the data distribution, such as N(0, I) to the data distribution 𝑝data (𝒙).
Mathematically, the generative model can be defined as the mapping function 𝑔𝜽 (·) : R𝑑 → R𝑛 ,
where𝑑 and𝑛 are the dimensions of latent variable and original data, respectively. A deep generative
model is capable of capturing probabilistic distribution for high-dimensional structured outputs
(e.g., images).

The basic idea is to employ DGM to learn the predictive distribution 𝑝 (𝒚 |𝒙) given the supervised
training data pairs {(𝒙𝑖 ,𝒚𝑖 )}𝑚𝑖=1. In this subsection, we use bold 𝒚𝑖 to denote the high-dimensional
structured outputs. It should be noted that to learn the predictive distribution instead of the data
distribution in feature space, the conditional deep generative model (cDGM) [140] should be employed.
Generally speaking, cDGM-based uncertainty quantification models learn a conditional density
over the prediction 𝒚, given the input feature 𝒙 . This amounts to learning a model 𝑔𝜽 (𝒛, ·) : X→ Y
such that the generative model 𝑔(𝒛, 𝒙) with 𝒛 ∼ 𝑝 (𝒛) approximates the true unknown distribution
𝑝true (𝒚 |𝒙). The variability of the prediction distribution 𝑝 (𝒚 |𝒙) is encoded into the latent variable
𝒛 and the generative model. During inference, for any 𝒙 ∈ X, we can generate𝑚 samples of 𝒚𝑖
with 𝑔𝜽 (𝒛𝑖 , 𝒙) and 𝒛𝑖 ∼ 𝑝 (𝒛). By analyzing the variability of the samples {𝒚𝑖 }𝑚𝑖=1, we can quantify
prediction uncertainty.

In the following subsection, we examine three types of deep generative models: the variational
autoencoder (VAE) [82], the generative adversarial network (GAN) [54], and the diffusion model
[64]. The VAE, a likelihood-based generative model, is trained by maximizing the evidence lower
bound (ELBO) of the likelihood function. GANs, on the other hand, are implicit generative models
trained through a two-player zero-sum game framework. Lastly, the diffusionmodel is a probabilistic
generative framework that employs a multi-step denoising process. We explore how each of these
frameworks can be applied to estimate prediction uncertainty.
VAE-based model: The VAE model consists of two modules: an encoder and a decoder. The

encoder network 𝑞𝜙 (𝒛 |𝒙) aims to embed the high dimensional structural output 𝒙 into a low-
dimensional code 𝒛, that captures the inherent ambiguity or noise of the input data. The decoder
𝑝𝜽 (𝒙 |𝒛) aims to reconstruct the input feature. VAE model has been popular for modeling structured
output uncertainty, especially for tasks on image data, because of its capability to model global and
local structure dependency in regular grid images. Specifically, two kinds of frameworks based on
the VAE model have been proposed to account for the data uncertainty arising from input noise and
target output noise: The first category aims to capture noise present in the input samples. The basic
idea is to embed each sample as a Gaussian distribution instead of a deterministic embedding in
the low dimensional latent space, where the mean represents the feature embedding and variance
represents the uncertainty of the embedding [19]. The method accounts for varying noise levels
inherent in the dataset, which is ubiquitous in many kinds of real-world datasets, for example, face
image recognition [19], medical image reconstruction [39]. This probabilistic embedding framework
leverages the VAE architecture to estimate the embedding and uncertainty simultaneously. The
second category aims to capture the noise that lies in the target outputs, where the ground truth is
imperfect, ambiguous, or corrupted. This scenario is common in the medical domain [92], where
the objects in the image are ambiguous and the experts may not reach a consensus on the class of
the objects (large uncertainty). Thus for segmentation or classification tasks, the model should be
aware of the prediction uncertainty. To capture the prediction uncertainty in the target outputs, the
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Fig. 10. VAE framework for uncertainty quantification.

conditional VAE (cVAE) [140] framework is adopted. Specifically, cVAE formulates the prediction
distribution as an integration over the latent embedding 𝒛,

𝑝 (𝒚 |𝒙 ) =
∫
𝑝 (𝒚 |𝒙, 𝒛 )𝑝 (𝑧 |𝒙 )𝑑𝒛 ≈ 1

𝑛

𝑛∑︁
𝑗=1

𝑝 (𝒚 |𝒙, 𝒛 𝑗 ), where 𝑧 𝑗 ∼ 𝑝 (𝑧 ) . (13)

The cVAE model is trained by maximizing the evidence lower bound of the likelihood. Then, during
inference, multiple latent features 𝒛 𝑗 can be drawn from the prior distribution, and the integration
over latent 𝒛 can be approximated with the sampling distribution [121]. Probabilistic U-Net model
[84] combines the architecture of cVAE and U-Net model by treating the U-Net model as the
encoder to produce a probabilistic segmentation map. The U-Net model can capture multi-scale
feature representations in the low-dimensional latent space to encode the potential variability in
the segmentation map. These models are illustrated in Fig. 10 (a) and (b).

In summary, the VAE-based framework can take into consideration the data uncertainty coming
from the input noise or the target output noise and can integrate state-of-the-art neural network
architectures into its framework, making it more flexible for many kinds of applications. The key
success lies in modeling the joint probability of all samples (pixels) in the image. The approach is
suitable for structured uncertainty quantification (e.g., image grid structure, graph structure) by
learning the implicit joint distribution of the structure.
GAN-based generative model: GAN is a type of generative model trained with a two-player

zero-game. It consists of a generator and a discriminator. In conditional GAN (cGAN), the generator
takes the input 𝑥 and random noise 𝒛 as input and generates the target variables 𝑦: G : (𝒙, 𝒛) → 𝒚.
The discriminator is trained to distinguish between generated samples and ground-truth samples.
GAN has been adopted in many domains. For example, In the transportation domain, GAN has
been used for traffic volume prediction [109]. The flow model is integrated with GAN to enable
likelihood estimation and better uncertainty quantification. Another approach [49, 115] extends
this method using the Wasserstein GAN [6] with gradient penalty to improve model convergence.
The key advantage of deep generative modeling for uncertainty quantification is that it directly
parameterizes a deep neural network to represent the prediction distribution without needing
an explicit distribution format. Moreover, it can integrate a physics-informed neural network for
better uncertainty estimation of physical science [31]. However, GAN-based models are harder to
train, especially for GAN-based models. Model convergence is not guaranteed.

Diffusion-based generative model: Diffusion models are a family of probabilistic generative
models that progressively destroy data by injecting noise in the forward diffusion process, then
learn to reverse this process to generate new data samples through a backward process [165].
The forward diffusion process gradually adds noise to the data according to a variance sched-
ule 𝛽𝑡 : 𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;

√︁
1 − 𝛽𝑡 x𝑡−1, 𝛽𝑡 I). The reverse process is defined as: 𝑝𝜃 (x𝑡−1 |x𝑡 ) =
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N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), Σ𝜃 (x𝑡 , 𝑡)), where 𝜇𝜃 and Σ𝜃 are learned with a neural network that aims to recon-
struct (denoise) x𝑡−1 from x𝑡 at each step. The training objective supervises the model to recover data
from noise accurately. Diffusion models have been applied to images [64], videos [10], time series
[142], and scientific simulations [44]. Similar to conditional VAEs and GANs, conditional diffusion
models can be applied to uncertainty quantification of model outputs given input features [4, 44, 95].
Latent diffusion models enhance the efficiency of diffusion models for high-resolution images or
video generation by operating on lower dimensional latent embeddings through (e.g., through an
autoencoder) [47, 112, 129]. As summarized in Table 3 below, the primary advantages of diffusion
models are their expressiveness to model complex high-dimensional distributions and generate
high-quality samples [165]. A major drawback, however, is the slow training and inference due to
the iterations of hundreds to thousands of steps [165]. There is ongoing research that addresses
this issue [80].
Summary on Data Uncertainty: Table 3 compares the pros and cons of existing approaches

for data uncertainty quantification. Discriminative models are simple but unsuited for capturing
structured output uncertainty. Generative can better quantify structured output uncertainty but
requires multiple sampling of model outputs. Among deep generative models, diffusion models are
currently more popular, but more efforts are needed to improve their efficiency.
The methods for data uncertainty, including deep discriminative models and deep generative

models, can also quantify total uncertainty with minimal modifications. For instance, deep gen-
erative models inherently account for data uncertainty by marginalizing over latent variables.
Model uncertainty can be estimated by computing the variance of predictions generated from
multiple latent samples, similar to Bayesian neural networks. For deep discriminative models, model
uncertainty can be assessed by measuring the variance of predictions from multiple parameterized
models. A more systematic review of techniques for disentangling and quantifying multiple types
of uncertainty is in Section 4.3.

Table 3. A comparison of UQ methods for data uncertainty

Model Approach Pros Cons

Deep Discriminative model
Pros: No need to modify
network architecture.
Cons: Not suitable for structured output.

Predict a parametric
distribution [56, 78]. Simple model training. Assume a parametric

output distribution.
Non-parametric:
predict an interval
[22, 118, 130, 162].

No rigid assumption on
output distribution.

Need to design new
training loss.

Deep Generative model
Pros: Capture uncertainty
for structured output data.
Cons: Require multiple sampling
for uncertainty quantification.

VAE-based model
[19, 39, 84, 121].

Stability in training,
probabilistic outputs.

Less expressive
compared with GAN
and diffusion models.

GAN-based model
[49, 109, 115].

More expressive
than VAE.

Instability in training
and lack of probabilistic
framework.

Diffusion-based model
[15, 36, 44, 138].

More expressive than VAE,
probabilistic framework.

High computational
cost.

4.3 Model and data uncertainty
Besides considering the data and model uncertainty separately, many frameworks attempt to jointly
consider the two kinds of uncertainty for more accurate quantification. In this part, we will review
existing frameworks that aims to quantify both types of uncertainty simultaneously.

4.3.1 Approaches combining data and model uncertainty. A straightforward way to consider both
data and model uncertainty is to select one of the approaches in each category and combine them
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in a single framework. Below, we will introduce some major ways to combine approaches for data
and model uncertainty and their potential drawbacks.

CombineBNNmodelwith prediction distribution: Themethod aims to capture both data and
model uncertainty within a single framework [78] by combining BNN with prediction distribution.
The model uncertainty is captured with the BNN approximation approach. Specifically, MC drop-
out is adopted due to its simplicity for implementation. For each dropout forward pass, a sample of
the weights is drawn from the weight distribution approximationW𝑡 ∼ Bernoulli(𝑝), where 𝑝 is
the dropout rate, then one forward prediction can be made with the weight by 𝑦𝑡 = 𝑝 (𝑦 |𝒙,W𝑡 ).
To obtain the data uncertainty, the output is formulated as a parameterized Gaussian distribution
instead of point estimation [𝑦𝑡 , 𝜎2𝑡 ] = 𝑝 (𝑦 |𝒙 ;W𝑡 ), where 𝑦𝑡 is the target variable mean prediction
and 𝜎2𝑡 is the prediction variance for a single forward prediction. With multiple dropout forward
passes, we have a set of𝑇 prediction samples {𝑦𝑡 , 𝜎2𝑡 }𝑇𝑡=1. The predictive uncertainty in the combined
model can be approximatedwith the law of total variance expressed as Var(𝑦) in Eq. 14. The intuition
behind this equation is that total uncertainty comprises two parts, the last 1

𝑇

∑𝑇
𝑡=1 𝜎

2
𝑡 represents

data uncertainty on average, and the first part 1
𝑇

∑𝑇
𝑡=1 𝑦

2
𝑡 − ( 1

𝑇

∑𝑇
𝑡=1 𝑦𝑡 )2 represents the disagreement

across 𝑇 MC-dropout models, which captures model uncertainty.

Var(𝑦) ≈ 1
𝑇

𝑇∑︁
𝑡=1

𝑦2𝑡 − ( 1
𝑇

𝑇∑︁
𝑡=1

𝑦𝑡 )2 +
1
𝑇

𝑇∑︁
𝑡=1

𝜎2
𝑡 . (14)

Combine ensemble model with prediction distribution: This approach [89] combines
the ensemble method with prediction distribution. The deep ensemble method constructs an
ensemble of DNNmodelsM = {M𝑖 }𝐾𝑖=1, where each modelM𝑖 can be set with different parameters,
or architecture choices. The model uncertainty is expressed as the variance or "disagreement"
among the ensemble models. In this way, the output of each model is modified as a parameterized
distribution to capture the data uncertainty. Similar to MC-dropout, we have an ensemble of
prediction distribution {𝑝 (𝑦 |𝒙,M𝑖 )}𝐾𝑖=1. In this part, we take the classification problem as an
example, where the prediction distribution is a parameterized categorical distribution. The total
uncertainty is captured with the entropy of average prediction distribution H(E𝑝 (M𝑖 )𝑝 (𝑦 |𝒙,M𝑖 )),
and the data uncertainty is the average entropy of each model, expressed as E𝑝 (M𝑖 )H(𝑝 (𝑦 |𝒙,M𝑖 )).
The model uncertainty can be expressed with the mutual information between the prediction and
the ensemble model 𝑦,M as expressed in Eq. 15.

MI(𝑦,M) = H(E𝑝 (M𝑖 )𝑝 (𝑦 |𝒙,M𝑖 ) ) − E𝑝 (M𝑖 )H(𝑝 (𝑦 |𝒙,M𝑖 ) ) . (15)

Combine ensemblemodel with prediction interval: Since the prediction interval constructed
in some approaches accounts only for the data noise variance, not the model uncertainty. To
improve the total uncertainty estimation, ensemble methods are adopted to combine prediction
intervals with ensemble methods to account for model uncertainty arising from model architecture
misspecification, parameter initialization, etc. [118]. Specifically, Given an ensemble of models
trained with different model specifications or sub-sampling of training datasets, where the model
prediction intervals are denoted as [𝑦𝑖 𝑗

𝑙
, 𝑦
𝑖 𝑗
𝑢 ] for sample 𝑖 = {1, ..., 𝑛} and model 𝑗 = {1, ...,𝑚}, the

model uncertainty can be captured by the variance of the lower bound 𝜎 (𝑖 )2
𝑙

and upper bound
variance 𝜎 (𝑖 )2

𝑢 . For example, the uncertainty of the lower bound is given by:

𝜎
(𝑖 )2
𝑙

=
1

𝑚 − 1

𝑚∑︁
𝑗=1

(𝑦 (𝑖 𝑗 )
𝑙

− 𝑦̂ (𝑖 )
𝑙

)2, where 𝑦̂ (𝑖 )
𝑙

=
1
𝑚

𝑚∑︁
𝑗=1

𝑦
(𝑖 𝑗 )
𝑙

,

𝜎
(𝑖 )2
𝑢 =

1
𝑚 − 1

𝑚∑︁
𝑗=1

(𝑦 (𝑖 𝑗 )
𝑢 − 𝑦̂ (𝑖 )

𝑢 )2, where 𝑦̂ (𝑖 )
𝑢 =

1
𝑚

𝑚∑︁
𝑗=1

𝑦
(𝑖 𝑗 )
𝑢 .

(16)

Then the new prediction interval [𝑦𝑙 , 𝑦𝑢] with 95% confidence level can be constructed as:
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𝑦̃𝑙 = 𝑦𝑙 − 1.96𝜎 (𝑖 )2
𝑙

, and 𝑦̃𝑢 = 𝑦𝑢 + 1.96𝜎 (𝑖 )2
𝑢 . (17)

The constructed interval can reflect both the data uncertainty and model uncertainty. However, this
approach relies on variance from the ensemble’s lower and upper bounds, which lacks theoretical
justification due to the independent treatment of the two boundaries. To overcome this limitation,
one recent approach proposes a split normal aggregation method to aggregate the prediction
interval ensembles into final intervals [132]. Specifically, the method fits a split normal distribution
(two pieces of normal distribution) over each prediction interval, and then the final prediction will
become a mixture of split normal distribution. The PI can be derived from the 1 − 𝛼 quantile of the
cumulative distribution.

In summary, to capture both the data and model uncertainty, existing literature can combine the
methodologies in the two categories. There are several limitations to the combination approaches:
first, the BNN or ensemble models require multiple forward passes for the prediction, which
introduces computation overhead and extra storage. Efficiency is a concern. Second, the simple
combination of data and model uncertainty lacks a theoretical guarantee, which requires post hoc
calibration of the model.

4.3.2 Evidential deep learning. To overcome the computational challenge for the combination
approaches, evidential deep learning was proposed to use one single deterministic model to capture
both the data and model uncertainty without multiple forward passes of the neural network
[9, 20, 104, 134]. The intuition of evidential deep learning is to predict class-wise evidence instead
of directly predicting class probabilities. In the following section, we review these methodologies,
including their advantages and disadvantages.

As discussed in the aforementioned sections, for classification problems, existing deep learning

Noisy Input 𝒙 Output

Dir(𝛍|𝜶)

sampling

𝒑(𝑦|𝝁, 𝒙)

Model uncertainty Data uncertainty

prior variance distribution entropy

Fig. 11. Evidential deep learning architecture.

based models explicitly or implicitly pre-
dict class probabilities (categorical distri-
bution parameters) with softmax-layer pa-
rameterized by DNNs to quantify predic-
tion uncertainty. However, softmax predic-
tion uncertainty often tends to be overcon-
fident [62]. Evidential deep learning is de-
veloped to overcome the limitation by in-
troducing evidence theory [75] to neural
network frameworks. The goal of eviden-
tial deep learning is to construct predictions
based on evidence and predict the parameters of Dirichlet density. For example, considering the
3-class classification problem, a vanilla neural network directly predicts the categorical distribution
for each class 𝜋 = 𝜋1, 𝜋2, 𝜋3 with

∑
𝑖 𝜋𝑖 = 1. However, this approach can only represent a point

estimation of prediction distribution. On the other hand, evidential deep learning aims to predict
the evidence for each class 𝜶 = {𝛼1, 𝛼2, 𝛼3} with the constraint 𝜶 > 0, which can be considered
as the parameters of Dirichlet distribution [134]. The framework is shown in Fig 11, where the
output is the evidence 𝜶 for each class, and the prediction distribution is sampled from the Dirichlet
distribution. The expected prediction distribution for each class is 𝑝𝑖 = 𝛼𝑖∑3

𝑐=1 𝛼𝑐
, whose entropy

represents data uncertainty. On the other hand, model uncertainty is reflected by the total evidence∑
𝑖 𝛼𝑖 , which means the more evidence we collect, the more confident the model is.
Mathematically, evidential deep learning aims to learn the prior distribution of categorical

distribution parameters, which is represented by the Dirichlet distribution. The Dirichlet distribution
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(a) Keep data uncertainty fixed , and model uncer-
tainty decrease from left to right.

(b) Keep the model uncertainty fixed, and the data
uncertainty decreases from left to right (the entropy
of the categoric distribution decreases).

Fig. 12. Dirichlet distribution density visualization.

is parameterized by its concentration parameters 𝜶 (evidence) where 𝛼0 is the sum of all 𝛼𝑖 and
is referred to as the precision of the Dirichlet distribution. A higher value of 𝛼0 will lead to
sharper distribution and lower model uncertainty. As shown in Eq.18 below, the Dir(𝝁 |𝜶 ) defines
a probability density function over the k-dimensional random variable 𝝁 = [𝜇1, ..., 𝜇𝑘 ], where 𝑘 is
the number of classes, 𝝁 belongs to the standard 𝑘 − 1 simplex (𝜇1 + ... + 𝜇𝑘 = 1 and 𝜇𝑖 ∈ [0, 1] for
all 𝑖 ∈ 1, ..., 𝑘), and can be regarded as the categorical distribution parameters.

The relationship between Dirichlet distribution and uncertainty quantification can be illustrated
using a 2-simplex. The random variable 𝝁 = [𝜇1, 𝜇2, 𝜇3] is represented by its Barycentric coordinates
in Fig. 12 on the 2-simplex. The Barycentric coordinate is a coordinate system where points are
located inside a simplex, and the value in each coordinate can be interpreted as the fraction of mass
placed at each corresponding vertex of the simplex. Fig. 12 (a) shows a scenario where the evidence
parameters are equal, resulting in indistinguishable classes and implying high data uncertainty
(high entropy for the sampled 𝝁). As the total evidence

∑
𝑖 𝛼𝑖 increases, the density becomes more

concentrated, which means the model uncertainty decreases, while the data uncertainty remains
fixed. Fig. 12 (b) shows a scenario with fixed model uncertainty, as the sum of evidence parameters
remains constant. When the evidence becomes imbalanced, the density becomes more concentrated
toward one class, thus decreasing the data uncertainty.

Dir(𝝁 |𝜶 ) = T(𝛼0 )∏𝐾
𝑐=1 T(𝛼𝑐 )

𝐾∏
𝑐=1

𝜇
𝛼𝑐 −1
𝑐 , 𝛼𝑐 > 0, 𝛼0 =

𝐾∑︁
𝑐=1

𝛼𝑐 . (18)

Due to the intriguing property of Dirichlet distribution, evidential deep learning directly predicts
the parameters of Dirichlet density. For example, the Dirichlet prior network (DPN) [104] learns the
concentration parameter 𝜶 for the Dirichlet distribution 𝜶 = 𝒇 (𝒙, 𝜽 ). The categorical distribution
parameters are then drawn from the Dirichlet distribution as 𝑝 (𝝁 |𝒙, 𝜽 ) = Dir(𝝁 |𝜶 ). The predicted
class probability is the average over possible values of 𝝁.

𝑝 (𝑤𝑐 |𝒙, 𝜽 ) =
∫
𝑝 (𝑤𝑐 |𝝁 )𝑝 (𝝁 |𝒙, 𝜽 ) =

𝛼𝑐

𝛼0
. (19)

To measure uncertainty from the Dirichlet distribution, the total uncertainty is computed as the
entropy of the average predictive distribution, while data uncertainty is determined by averaging
the entropy across each realization of 𝝁. Several approaches have extended the prior network to
handle regression tasks, and a posterior network has been introduced to enhance the reliability of
uncertainty estimation. Additionally, other second-order methods have been proposed to jointly
quantify data and model uncertainty within a single deterministic framework [14, 65, 86].
The advantage of evidential deep learning is the approach requires only a single forward pass

during inference and is much more computationally efficient. The approach also explicitly dis-
tinguishes data and model uncertainty in a principled way. The disadvantage is that the training
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stage is more complex and does not guarantee the same prediction accuracy as a vanilla network
and does not leverage existing advances in DNNs. Furthermore, the training stage requires OOD
samples to learn effective representations and increase the amount of dataset.

Table 4. A comparison of UQ methods for both model and data uncertainty

Model Approaches Pros Cons

Combination of
existing approaches

Combine BNN
with prediction
distribution [78].

Capture uncertainty
from both data noise
and model parameters.

Require multiple
forward pass
during inference.

Combine ensemble
with prediction
distribution [89].

Capture uncertainty
from both data noise
and mode architectures.

Require more
computation and
storage requirement.

Combine ensemble
with prediction
interval [118, 132].

Capture both data and
model uncertainty and
do not need explicit
parametric distribution form.

Require modification
on existing DNN
training process.

Evidential deep
learning

Evidential deep
learning [9, 20, 104, 134].

Computationally efficient
relative to combination
approaches.

Strong assumption on
prior distribution.
Difficult to train.

Conformal
Prediction

Prediction set
or interval [18, 60, 76, 103].

No rigid assumption
in distribution.

Require exchangeability
on sample distribution.

4.3.3 Conformal Prediction. Though existing UQ approaches can quantify total uncertainty from
various sources, a major limitation is the lack of formal guarantees. To address this issue, conformal
prediction (CP) is a post-processing approach that constructs a finite prediction set with a statistical
guarantee to cover the true label [5]. Conformal prediction, which belongs to distribution-free
uncertainty quantification is model-agnostic, and provides formal results for marginal coverage,
defined as the average probability that the true class is contained in the prediction set [5]. Formally,
this coverage guarantee states:

P(𝑦 ∈ C(𝑥)) ≥ 1 − 𝛼. (20)
where 𝒙 is a sample instance, and 𝑦 is the ground truth. Unlike traditional confidence intervals
which typically assume a specific distribution of data or residuals, conformal prediction provides a
non-parametric and distribution-free approach [76]. This is advantageous for deep learning, where
traditional assumptions are often violated due to model complexity and non-linearity.
There are several approaches to developing conformal predictions for deep learning models.

One approach is to apply conformal methods directly to pre-trained deep learning models [103].
Second, credal Bayesian deep learning trains an (uncountable) infinite ensemble of BNNs using only
finitely many elements and outputs a prediction set for total uncertainty estimation [18]. Third,
density-based deep conformal prediction models uncertainty from out-of-distribution samples by
considering distances between samples explicitly [60]. Common conformal prediction methods
assume that data instances are independently and identically distributed (i.i.d.). Recent efforts
extend conformal prediction beyond this assumption to graph data by introducing a permutation
invariance condition [163, 174] and to time series data through adaptive conformal prediction [172].
Summary on UQ for Both Model and Data Uncertainty: Table 4 compares the pros and

cons of existing approaches for both data and model uncertainty. The combination of data and
model uncertainty estimation methods is simple but computationally expensive. On the other hand,
evidential deep learning and conformal prediction are more efficient but require more assumptions
on the data distributions.
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5 UNCERTAINTY ESTIMATION IN VARIOUS MACHINE LEARNING PROBLEMS
In this section, we discuss several major ML problems where UQ can play a critical role.

5.1 Out-of-distribution detection
A fundamental assumption in deep neural networks is that the test data distribution closely
resembles the training data distribution 𝑝train (𝑥) ≈ 𝑝test (𝑥). However, in complex real-world
scenarios, a DNN can encounter out-of-distribution (OOD) samples that differ from the training
data distribution. This can lead to significant drops in prediction performance. A DNNmodel should
be able to recognize these situations.

Given a training data distribution 𝑝 (𝑥), OOD data includes samples that are either unlikely under
the training data distribution or outside the support of 𝑝 (𝑥). Accurate detection of OOD samples is
important for safety-critical applications, e.g., autonomous driving [135], medical image analysis
[52]. Since OOD samples lie further away from the training samples, the model may not generalize
well and could produce unstable predictions. The primary uncertainty for OOD data is concerned
with model uncertainty because the model trained with in-distribution may not generalize well to
other domains.

Existing approaches: Existing approaches leveraging the model uncertainty framework are much
more popular for OOD detection. For example, drop-out-based BNN approaches have been applied
to OOD detection and improved the performance using randomized embeddings from intermediate
layers of a dropout BNN [113] and node-based BNN [146]. Deep ensembles are simple and well-
performing on OOD detection [89, 173]. Recent advances have developed distance-aware DNN for
more accurate OOD detection by imposing constraints on the feature extracting process [93, 99].
The evidential deep learning framework has also demonstrated its capability on OOD detection in
many benchmark datasets because of the explicit distinction between two types of uncertainty in
the framework [20].

5.2 Active Learning
Obtaining labeled data for deep learning models can be laborious and time-consuming. Active
learning [126] aims to solve the data labeling issue by learning from a small amount of data and
choosing by the model what data it requires the user to label and retrain the model iteratively. The
goal is to reduce the number of labeled examples needed by using a strategy to prioritize samples
worth labeling. A popular strategy is to use predictive uncertainty, prioritizing instances where
predictions are most uncertain.
The key goal in active learning is to choose observations 𝒙 where obtaining labels 𝑦 would

improve learning performance. As discussed in the background, adding samples with high data
uncertainty may not improve the trained model because its inherent randomness is irreducible
while more samples with model uncertainty can improve the model’s performance. In this regard,
model uncertainty is more important for active learning [114]. The critical challenge for active
learning is to distinguish between the data and model uncertainty and utilize model uncertainty
for selecting new samples.
Existing approaches: Similar to OOD detection, approaches for model uncertainty detection

can be adapted for active learning by considering uncertainty coming from the parameter, model
architecture, and sample density sparsity. For example, the BNN framework considers the samples
that decrease the entropy of 𝑝 (𝜽 |Dtr, {𝒙, 𝑦}) the most will be the most useful [34]. The deep
ensemble and MC-dropout approach can also be a straightforward way for quantifying the model
uncertainty in active learning [61]. Recent approaches propose margin-based uncertainty sampling
schemes and provide convergence analysis [124].
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5.3 Deep Reinforcement Learning
Deep reinforcement learning (DRL) aims to train an agent interacting with the environment to
maximize its total rewards [141]. DRL can be regarded as learning via the Markov Decision Process,
defined by the tuple {𝑆,𝐴, 𝑅, 𝑃}, where 𝑆 is the set of states (environment conditions), 𝐴 is the set
of actions (agent), 𝑅 is the function mapping state-action pairs to rewards, and 𝑃 is the transition
probability (the probability of next state after performing actions on current state). The goal of
DRL is to learn the policy 𝜋 (a function mapping given state to an action) that maximizes the sum
of discounted future rewards 𝐽 (𝜋) = E[∑𝑖 𝛾

𝑖𝑅(𝑠𝑖 , 𝑎𝑖 )], where 𝛾 is the discount factor on the future
reward (indicating that future rewards are less significant) [141]. In Deep Q-learning, DNN models
are used to learn value functions (expected rewards for each state-action pair) given an input state.
Due to the complex agent and environment conditions and limited training states, two types

of uncertainty sources exist: data uncertainty and model uncertainty. Data uncertainty arises
from the intrinsic randomness in the interactions between the agent and environment, affecting
the reward 𝑅, the transition functions 𝑃 , and the next state value distribution. To characterize
the data uncertainty arising from those sources, the distributional RL [12] takes a probabilistic
perspective on learning the rewards functions instead of approximating the expectation of the
value. Thus the approach can be used to implement risk-aware behavior in the agent. A similar
approach is proposed to quantify the data uncertainty in DRL aiming for curiosity-based learning
in the face of unpredictable transitions [107]. The following work [28] extends the parametric
distribution to non-parametric prediction interval methods to quantify the data uncertainty and
avoid the explicit parametric format. The approach corresponds to the literature we discuss in
section 5.1. On the other hand, given the limited training state space, model uncertainty also
exists. The DNN model may not learn the optimum policy function and miss the unexplored state
spaces, potentially giving higher rewards. This means the DRL model faces a trade-off between
exploitation and exploration. Exploitation means utilizing the model’s knowledge and choosing the
best policy to maximize future rewards. Exploration involves selecting unexplored states to learn
about potential high-reward state-action pairs. The challenge of effective exploration is connected to
model uncertainty. The higher model uncertainty means the model is not learned well in the given
state and requires more exploration of that sample. For example, the deep ensemble Q-network [25]
is proposed to inject model uncertainty into Q learning for more efficient exploration sampling. To
reduce computational overhead, the Dropout Q-functions [63] method uses MC-dropout for model
uncertainty quantification. The following work [117] demonstrates the previous ensemble and
dropout methods may produce a poor approximation to the model uncertainty in cases where state
density does not correlate with the true uncertainty. To overcome the shortcoming, they suggest
adding a random prior to the ensemble DQNs.
In summary, UQ plays a critical role across various machine-learning problems. In out-of-

distribution detection, uncertainty due to domain shift is categorized as model uncertainty rather
than data uncertainty. BNN, ensemble, and distance-based methods are well-suited in these cases by
capturing model uncertainty through weight distributions or sample embeddings. In active learning,
identifying samples with high model uncertainty is essential for improving model training, while
samples with high data uncertainty are generally less important for sample selection. Therefore,
BNN and ensemble-based approaches play a larger role in active learning. In reinforcement learning,
data andmodel uncertainty are important since both help in efficient policy learning and exploration.
Therefore, the combined approach is useful in this context.
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6 FUTURE DIRECTION
This section identifies several future directions, including UQ for large language models, UQ for
deep learning in scientific simulations, combining UQ and explainability, and UQ for DNN with
structured outputs.

6.1 UQ for Large Language Models
In recent years, large language models (LLMs) such as OpenAI’s GPT-4 [2] have revolutionized deep
learning across diverse tasks such as text summarization, machine translation, complex problem-
solving, and even creative writing. However, it is found that an LLM sometimes generates over-
confident outputs that are plausible-sounding but factually incorrect, nonsensical, or unsupported
by their training data, also called hallucinations [21, 41]. Designing UQmethods for LLMs is essential
for improving trustworthiness, especially in high-stakes applications. However, several unique
challenges exist. Unlike simpler DNN models, LLMs operate in a high-dimensional output space of
a long sequence of tokens, making traditional measures like common class entropy insufficient [98].
Furthermore, LLM-generated outputs may vary lexically (different token sequences) but convey
the same semantic meaning, requiring UQ that can assess semantic similarity [42].

Table 5. Categorization of Existing Methods for UncertaintyQuantification in LLMs

Strategy Black-box Methods White-box Methods

Token
probability-based UQ N/A Reweight token entropy based on token

importance [37], Claim-conditioned token
uncertainty for factual claim detection [40]

Self-knowledge-based
UQ

Use self-evaluation prompting to
elicit a confidence score from the

model [23]

Train a separate module using latent
representations to predict uncertainty [7]

Sampling-based UQ Generate multiple outputs and
measure response similarity [98]

Analyze response covariance in latent
space (e.g., eigenvalues) [21]

Existing methods for UQ in LLMs can be categorized based on their underlying strategies, includ-
ing token probability-based, self-knowledge-based, and sampling-based UQ. Within each strategy,
specific methods can also be divided into black-box-based methods and white-box-based methods,
according to whether a method requires access to model internal details [51]. The categorization
is summarized in Table 5. The first category, i.e., token-probability-based UQ, is only applicable
in white-box settings, as it requires access to token-logit level outputs. One approach focuses on
reweighting token class entropy based on the importance of each token [37]. Another method,
Claim Conditioned Probability (CCP), quantifies token-level uncertainty specifically for factual
claims, filtering out noise from uncertainty about claim formulation [40]. The second category
is self-knowledge-based UQ. For black-box methods, self-evaluation is often used to prompt an
LLM to produce a confidence score [23]. In white-box scenarios, a separate module can be trained
to predict uncertainty scores based on the LLM’s latent representations [7]. The third category
is sampling-based UQ. In black-box methods, multiple samples are generated to assess response
similarity [98]. For white-box approaches, semantic consistency can be examined based on eigen-
values of the response covariance matrix in latent embeddings [21]. Additionally, the conformal
prediction has also been used to produce a prediction set of possible outputs that include the correct
answer with a specified error rate [170]. Some semantic consistency-based methods are general for
both white-box and black-box scenarios. For instance, [42] proposes computing semantic entropy
through hidden embeddings or prompt outputs from an LLM.
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The field is still in its infancy, and further research is needed to advance UQ for LLM. One
research direction is the development of new techniques for calibrating LLMs to produce more
accurate confidence estimates. New benchmarking datasets and evaluation metrics for UQ in LLMs
are needed. Another direction involves integrating uncertainty estimation directly into LLM’s
reasoning and decision-making process, e.g., extending chain-of-thought [156] and tree-of-thought
[168] with uncertainty quantification. Finally, it is also important to develop uncertainty-aware
LLM agents (agentic AI) in complicated and collaborative tasks.

6.2 UQ for deep learning in scientific simulations
Effective and efficient simulation of scientific phenomena, such as extreme weather events, climate
change, and tsunamis, often require running physical models [95]. Traditionally, these physical
models are based on numerical Partial Differential Equations (PDEs), which are computationally
intensive. In recent years, scientific machine (deep) learning has emerged as a new paradigm
since data-driven techniques can learn complex patterns from vast amounts of data and make fast
predictions with GPUs [83]. UQ for deep learning in scientific simulation is crucial in high-stake
decision-making applications (e.g., disaster response). The uncertainty in scientific simulation
and modeling can come from different sources. First, the initial and boundary conditions of the
physical system are non-deterministic, and the system may be chaotic [152]. Second, the inherent
physical principle may not be perfectly known, or the parameter of the governing equation may be
stochastic, i.e., in an imperfect physical system, the conservation law of heat may be violated in a
non-closed system [167]. Compared to traditional physics-based numerical simulations, diffusion
models can generate ensembles of predictions more quickly for uncertainty estimation through
probabilistic sampling [95].

Physics-informed neural networks (PINNs) [77] and neural operators [87] are currently twomajor
deep learning techniques for solving PDEs in scientific simulations. PINNs incorporate physical
constraints as soft regularization within the loss function, ensuring adherence to governing physical
laws. In contrast, neural operators aim to train a neural network surrogate for a family of PDE
instances. To enable uncertainty quantification, PINNs, and neural operators are often combined
with UQ methods such as Bayesian neural networks and ensemble approaches [122, 131]. However,
most existing works often focus on synthetic data instead of complex real-world applications (e.g.,
physical oceanographers). In recent years, deep generative models, especially diffusion models [64],
are increasingly used for real-world scientific simulations such as weather forecasting [48, 95, 120].
There are several potential future research directions. One direction is to decompose different

sources of uncertainty, including those from model misspecification, stochasticity, incomplete
knowledge of the underlying physical processes, and uncertainties tied to initial conditions, bound-
ary conditions, and external forcings. Second, more efforts are needed for UQ for AI in simulating
and forecasting extreme events, such as storm surges [143]. These events are rare (less observational
data are available for training) but their societal impacts are very high. Moreover, model outputs
can be highly sensitive to inputs (e.g., a small change in the input wind field and air pressures from
a hurricane track will make a dramatic difference in output surge levels). Addressing this challenge
requires the incorporation of physical knowledge in the UQ framework of the AI surrogate. Another
direction is to improve the computational efficiency of AI models such as diffusion models, which
are slow for both training and inference due to a large number of iterations [64]. This is of particular
importance for high-resolution spatiotemporal simulations. Finally, it is important to design UQ
methods for AI in long-term temporal forecasting as error and uncertainty can accumulate over
extended time horizons [83].
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6.3 Combine UQ with DNN explainability
The explanation for DNN model predictions has been increasingly crucial because it provides
tools for understanding and diagnosing the model’s prediction. Recently, many explainability
methods, termed explainers [151], have been introduced in the category of local feature attribution
methods. That is, methods that return a real-valued score for each feature of a given data sample,
representing the feature’s relative importance for the sample prediction. These explanations are
local in that each data sample may have a different explanation. Using local feature attribution
methods, therefore, helps users better understand nonlinear and complex black-box models. Both
uncertainty quantification and explanation are important for a robust, trustworthy AI model.
Current methodologies consider two directions separately, and we believe it could enable a more
trustworthy AI system if combined. Though many methodologies have been proposed for more
precise uncertainty quantification, very few techniques attempt to explain why uncertainty exists
in the predictions.
There are two possible directions to combine the power of explanations and uncertainty quan-

tification: First, existing explanation methods could be potentially improved after considering the
prediction uncertainty since those uncertain samples’ explanations may not be trustworthy and can
be omitted [175]. Second, from another perspective, after obtaining the uncertainty quantification,
we can leverage the existing post hoc explanation methods to understand the reason that the model
is uncertain [69]. For example, it is intriguing to ask the question of why the prediction is uncertain
and which set of input features are uncertain, or due to which layer of the model is imperfect.

6.4 UQ for DNNs with structured outputs
Structured data are samples that are interdependent with each other, violating the common i.i.d
assumption [8]. Examples are imaging data, spatiotemporal data, and graphs. Deep learning has
been widely used to model structured data, but the uncertainty of its prediction is not often
quantified. Here, we list future research directions for the three different types of structured data.

6.4.1 Imaging and inverse problem. The goal of the imaging process is to reconstruct an unknown
image from measurements, which is an inverse problem commonly used in medical imaging
(e.g., magnetic resonance imaging and X-ray computed tomography) and geophysical inversion
(e.g., seismic inversion) [39]. However, this process is challenging due to the limited and noisy
information used to determine the original image, leading to structured uncertainty and correlations
between nearby pixels in the reconstructed image [78]. To overcome this issue, current research
in uncertainty quantification of inverse problems employs conditional deep generative models,
such as cVAE, cGAN, and conditional normalizing flow models [35]. These methods utilize a low-
dimensional latent space for image generation but may overlook unique data characteristics, such
as structural constraints from domain physics in certain types of image data, such as remote sensing
images, MRI images, or geological subsurface images [73, 137]. The use of physics-informed models
may improve uncertainty quantification in these cases. It’s promising to incorporate the physics
constraints for quantifying the uncertainty associated with the imaging process.

6.4.2 Spatiotemporal data. Spatiotemporal data are special due to the violation of the common
assumption that samples follow an identical and independent distribution [70, 136]. Uncertainty
quantification of spatiotemporal deep learning poses several unique challenges. First, the analysis of
spatiotemporal data requires the co-registration of different maps (e.g., points, lines, polygons, geo-
raster) into the same spatial reference system. The process is subject to registration uncertainty due
to GPS errors or annotation mistakes in map generation [71]. Such registration uncertainty causes
troubles when training deep neural networks [59]. Second, implicit dependency structures exist
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in continuous space and time (e.g., spatial and temporal autocorrelation, and temporal dynamics).
Thus, the uncertainty quantification process should be aware of such a dependency structure.
Third, spatiotemporal non-stationary requires characterizing uncertainty due to out-of-distribution
samples [70, 136]. In addition, a different level of uncertainty exists based on the nearby training
sample density. Traditionally, the Gaussian process has been widely used to quantify spatial
uncertainty. However, for deep neural network models, new techniques are needed that consider
sample density both in the non-spatial feature space and in the geographic space.

6.4.3 Graph data. Graph data is a general type of structured data with nodes and edge connections.
Graph neural networks (GNNs) have been widely used for graph applications related to node
classification and edge (link) prediction. However, UQ for GNN models has been less explored.
Some work utilizes existing UQ techniques for GNN models [43] without considering their unique
characteristics. First, predictions on a graph are structured, so the UQmodule needs to consider such
structural dependency. Second, many GNN models assume a fixed graph topology from training
and test instances (e.g., spectral-based methods [32]). Uncertainty in GNN predictions arises from
shifts in graph topology between training and test graphs. Similarly, uncertainty exists when the
graph is perturbed by removing nodes and edges. Finally, many real-world graph problems are
spatiotemporal at the same time (e.g., traffic flow prediction on road networks). Thus, challenges
related to UQ for spatiotemporal deep learning also apply to graphs.

7 CONCLUSION
This paper presents a systematic survey on uncertainty quantification for DNNs based on the types
of uncertainty sources. We categorize the existing literature into three groups: model uncertainty,
data uncertainty, and their combination. Additionally, we analyze the strengths and weaknesses of
each approach based on the specific type of uncertainty it addresses. We also summarize the sources
of uncertainty and the unique challenges faced across various applications, and ML problems, and
propose several future research directions.
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